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Abstract

The long-term behavior of cooling an initially quiescent isothermal Newtonian fluid in a vertical cylinder by

unsteady natural convection with a fixed wall temperature has been investigated in this study by scaling analysis and

direct numerical simulation. Two specific cases are considered. Case 1 assumes that the fluid cooling is due to the

imposed fixed temperature on the vertical sidewall whereas the top and bottom boundaries are adiabatic. Case 2

assumes that the cooling is due to that on both the vertical sidewall and the bottom boundary whereas the top boundary

is adiabatic. The long-term behavior of the fluid cooling in the cylinder is well represented by Ta(t), the average fluid

temperature in the cylinder at time t, and the average Nusselt number on the cooling boundary. The scaling analysis

shows that for both cases ha(s) scales as e�CðARaÞ�1=4s � 1, where ha(s) is the dimensionless form of Ta(t), s the dimension-

less time, A the aspect ratio of the vertical cylinder, Ra the Rayleigh number, and C a proportionality constant. A series

of direct numerical simulations with the selected values of A, Ra, and Pr (Pr is the Prandtl number) in the ranges of 1/

3 6 A 6 3, 6 · 106 6 Ra 6 6 · 1010, and 1 6 Pr 6 1000 have been carried out for both cases to validate the developed

scaling relations, and it is found that these numerical results agree well with the scaling relations. These numerical

results have also been used to quantify the scaling relations and it is found that C = 1.287 and 1.357 respectively for

Case 1 and 2 with Ra, A and Pr in the ranges of 1/3 6 A 6 3, 6 · 106 6 Ra 6 6 · 1010, and 1 6 Pr 6 1000.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Cooling or heating a body of fluid in an enclosure via

natural convection with an imposed different tempera-

ture or heat flux on the enclosure boundary is widely

encountered in nature and in engineering settings, and

the understanding of its behavior is of fundamental
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interest and practical importance. In the past decades,

extensive experimental, numerical, and analytical studies

have been conducted on this issue, although mainly on

the more specific case of a rectangular cavity with differ-

entially heated sidewalls, such as those well documented

in [1–4] and in the annual literature reviews on heat

transfer (see, e.g., [5]).

The majority of the past studies have been on the

short-term behavior of the cooling/heating process,

involving either the boundary-layer formation and its

evolution on the cooling/heating wall, the travelling

wave activities, the stratification established in the enclo-

sure, or the combinations of these features. For example,

Sakurai and Matsuda [6] conducted a theoretical inves-

tigation into the transient process in an already stratified
ed.
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Nomenclature

A aspect ratio of cylinder, H/R

Ab bottom surface area, pR2

As sidewall surface area, 2pRH
C proportional constant

C0 proportional constant in (9)

C1 proportional constant in (11)

C2 proportional constant in (15)

cp specific heat at constant pressure

g acceleration due to gravity

H height of cylinder
�hb average heat transfer coefficient on bottom

boundary
�hs average heat transfer coefficient on sidewall

k thermal conductivity of fluid

Nub average Nusselt number on bottom bound-

ary, defined by (14)

Nub;a average Nusselt number on bottom bound-

ary over sf, defined by (26)

Nus average Nusselt number on sidewall, defined

by (7)

Nus;a average Nusselt number on sidewall over sf,
defined by (23)

Nut;a average Nusselt number on all boundaries

over sf, defined by (27)

p dimensionless pressure

Pr Prandtl number, m/j
R radius of cylinder

r dimensionless radial coordinate

Ra Rayleigh number, gb(T0 � Tw)R
3/mj

RaH Rayleigh number, gb(T0 � Tw)H
3/mj

sdi minimum standard deviation

sdt minimum standard deviation

T temperature

Ta(t) average fluid temperature at t

T0 fluid temperature at t = 0

Tw temperature imposed on sidewall and/or

bottom boundary

t time

u dimensionless radial velocity

Vc volume of cylinder, pR2H

V0 characteristic velocity, jRa1/2/R
v dimensionless vertical velocity

z dimensionless vertical coordinate

Greek symbols

b fluid thermal expansion coefficient

h dimensionless temperature

ha(s) dimensionless average fluid temperature at

s, [Ta(t) � T0]/(T0 � Tw)

j fluid thermal diffusivity

m fluid kinematic viscosity

q fluid density

s dimensionless time, t/(R/V0)

sf dimensionless time at ha(sf) = �0.99

/b percentage of heat transferred via bottom

boundary over sf, defined by (28)

Subscripts

b bottom boundary

s sidewall
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fluid, revealing the core of the intricate physics involved

in the transient adjustment process of a stratified fluid

system in response to changes in thermal boundary con-

ditions in a vertical circular cylinder, which was further

modified and extended analytically by Jischke and Doty

[7], and numerically by Hyun et al. [8], Hyun [9], and

Hyun and Choi [10].

Patterson and Imberger [11] carried out a pioneering

investigation of the transient features that occur when

the temperatures at the opposing two vertical sidewalls

of a rectangular cavity are impulsively heated and

cooled by an equal amount, devising a classification of

the development of the flow through several transient

flow regimes to one of three steady-state types of flow

based on the relative values of Ra, the Rayleigh number,

and various combinations of Pr, the Prandtl number,

and A, the aspect ratio of cavity. This Patterson–Imber-

ger flow model has since occupied the center stage of re-

search into understanding natural convection in cavities,

and numerous investigations subsequently focused on

diverse aspects of the model. For example, the numerical
studies by Hyun [12,13] elucidated the flow and temper-

ature structures of the heat-up process of an initially

homogeneous fluid in a cylinder with a linearly-heated

sidewall using a finite-difference model and the effect

of Pr on heatup of a stratified fluid in an enclosure.

Nicolette and Yang [14] made a numerical and experi-

mental investigation into two-dimensional transient nat-

ural convection of single-phase fluids inside a completely

filled square enclosure with one vertical wall cooled and

the other three walls insulated. Otis and Roessler [15]

conducted an experimental investigation into the devel-

opment of stratification of a gas in a cylindrical enclo-

sure and provided experimental support for the

existence of internal waves and revealed several time

constants that characterize the process. Schladow et al.

[16] conducted a series of two- and three-dimensional

numerical simulations of transient flow in a side-heated

cavity and their simulations generally agree with the re-

sults of the scaling arguments [11]. Patterson and Arm-

field [17] conducted detailed experimental and

numerical investigations into the presence of travelling
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wave instabilities on the vertical-wall boundary layers

and horizontal intrusions, the existence of a rapid flow

divergence in the region of the outflow of the intrusions,

and the presence of cavity-scale oscillations caused by

the interaction of the intrusion with the opposing verti-

cal boundary layer. Armfield and Patterson [18,19] and

Armfield and Janssen [20] made further in-depth studies

on the wave and stability properties of the boundary lay-

ers in the cavities. Xin and Le Quéré [21] investiged

numerically chaotic natural convection in a differentially

heated air-filled cavity with adiabatic horizontal walls.

Brooker et al. [22] conducted a non-parallel linear stabil-

ity analysis of the vertical boundary layer in a differen-

tially heated cavity. Kwak et al. [23] conducted a

numerical study on the transient natural convective

cool-down process of a fluid in a cylindrical container,

with emphasis on the flow patterns when the maximum

density temperature is experienced.

More recently, the authors carried out a scaling anal-

ysis and direct numerical simulation of the transient

processes of cooling-down and stratifying an initially

homogeneous fluid by natural convection in a vertical

circular cylinder and in a rectangular container [24–

26]. The results show that vigorous flow activities con-

centrate mainly in the vertical thermal boundary layer

along the sidewall and in the horizontal region which

is the lower part of the domain where the cold intrusion

flow is created. The transient flow patterns at the unstea-

dy and quasi-steady stages were analysed, including the

activities of the travelling waves in the vertical thermal

boundary layer along the sidewall, the cold intrusion

movements in the horizontal region, and the stratifica-

tion of the fluid. A scaling analysis was used to charac-

terize the flow evolution at these distinct developmental

stages which was quantified by extensive direct numeri-

cal simulations under different flow situations in terms

of Ra, Pr, and A. The scaling relations were also ob-

tained by the authors [27] for the boundary layer devel-

opment along a vertical isothermal plate in a linearly

stratified fluid with Pr > 1. Oliveski et al. [28] made a

numerical and an experimental analysis of velocity and

temperature fields inside a storage tank submitted to

natural convection cooling. All these studies have ad-

dressed on the short-term behavior of the cooling/heat-

ing process, while the study of the long-term behavior

is rare. The long-term behavior of the cooling/heating

process is not only of fundamental interest to fluid

mechanics and heat transfer, but also of importance in

many practical applications. For example, the nocturnal

cooling-down of the heated water and the heated air via

unsteady natural convection flow in a solar water stor-

age tank and in a building are typical practical applica-

tions of the long-term behavior of fluid cooling by

unsteady natural convection flow.

In this study, the long-term behavior of cooling a qui-

escent isothermal Newtonian fluid in a vertical cylinder
by unsteady natural convection with a fixed lower wall

temperature is investigated by a scaling analysis and di-

rect numerical simulation. Specifically, the long-term

behavior of the fluid cooling due to the imposed lower

fixed temperature on the vertical sidewall whereas all

the remaining boundaries are adiabatic and that due

to the imposed fixed lower temperature on both the ver-

tical sidewall and the bottom boundary whereas the top

boundary is adiabatic is investigated. In Section 2, a

scaling analysis is carried out to develop the scaling rela-

tions to characterize the long-term behavior of the fluid

cooling, which is well represented by the transient aver-

age fluid temperature in the cylinder and the average

Nusselt number(s) on the cooling wall(s). In Section 3,

the governing equations and the numerical methods as

well as the meshes used in this study is briefly intro-

duced. The scaling relations are then validated and

quantified in Section 4 by a series of direct numerical

simulations with the selected values of A, Ra, and Pr

in the ranges of 1/3 6 A 6 3, 6 · 106 6 Ra 6 6 · 1010,

and 1 6 Pr 6 500. Finally, conclusions is summarized

in Section 5.
2. Scaling analysis

Under consideration is the long-term behavior of

cooling a quiescent isothermal Newtonian fluid in a ver-

tical cylinder by unsteady natural convection with an

imposed fixed lower wall temperature. The physical sys-

tem considered in this study is schematically depicted in

Fig. 1. Two specific cases are considered. Case 1 assumes

that the cooling is due to the imposed fixed wall temper-

ature Tw on the sidewall while all the remaining bound-

aries are adiabatic and non-slip. Case 2 assumes that the

cooling is due to Tw imposed on both the sidewall and

the bottom boundary while the top boundary is adia-

batic and non-slip. For both cases, the fluid in the cylin-

der is initially at rest and at a uniform temperature T0

(T0 > Tw). It is assumed that the flows are laminar and

axisymmetric so that two-dimensional flows can be as-

sumed and only one-half of the physical domain is nec-

essary to be chosen as the computational domain, as

shown in Fig. 1(c).

The long-term behavior of the fluid cooling is well

represented by the transient average temperature Ta(t)

over the whole body of the fluid in the cylinder at time

t and the average Nusselt numbers on the cooling walls.

In this section, scaling relations will be developed to

characterize Ta(t) in terms of the control parameters of

the flow, that is, the Rayleigh number Ra, the Prandtl

number Pr, and the aspect ratio A of the vertical cylin-

der, which are defined as follows,

Ra ¼ gbðT 0 � T wÞR3

mj
; Pr ¼ m

j
; A ¼ H

R
;



Fig. 1. Schematic depiction of the physical systems and the computational domain.
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where g is the acceleration due to gravity, b, m and j are

the thermal expansion coefficient, kinematic viscosity

and thermal diffusivity of fluid, and H and R are the

height and radius of the vertical cylinder, respectively.

In this study, the investigation will focus on the flows

with 1 6 Pr 6 1000 and 6 · 106 6 Ra 6 6 · 1010. For

such flows, it is appropriate to assume that q, the density
of the fluid, is constant, except that appearing in the

buoyancy, and cp, the specific heat of fluid at constant

pressure, is also constant. Aspect ratios in the range 1/

3 6 A 6 3 will be considered. For these aspect ratios

and Rayleigh numbers distinct boundary-layer develop-

ment, fluid stratification and fluid cooling-down stages

occur. It is expected that the flow behavior with very

large or small aspect ratios or small Rayleigh number

will be different from that observed here.

2.1. Case 1

In this case, as the fluid cooling is achieved by main-

taining a fixed temperature Tw on the vertical sidewall

while keeping the top and bottom boundaries adiabatic,

energy conservation requires that

qV ccp
dT aðtÞ
dt

¼ ��hsAs½T aðtÞ � T w�; ð1Þ

where Vc = pR2H is the volume of the fluid in the cylin-

der, As = 2pRH is the surface area of the sidewall, and �hs
is the average heat transfer coefficient on the sidewall.

The initial condition for (1) is as follows:

T aðtÞ ¼ T 0 at t ¼ 0: ð2Þ

Eq. (1) can also be written in the following dimen-

sionless form,

dhaðsÞ
haðsÞ þ 1

¼ � 2�hs
qcpV 0

ds; ð3Þ

in which the dimensionless temperature ha(s) and time s
are defined respectively as follows:

haðsÞ ¼
T aðtÞ � T 0

T 0 � T w

; s ¼ t
ðR=V 0Þ

; ð4Þ
where V0 is a characteristic velocity scale of the flow.

For unsteady natural convection flow in a cavity, it is

a common practice to use V0 = jRa1/2/R, the velocity

scale of the thermal boundary layer [11,24,26], which is

also used here. The initial condition (2) becomes

haðsÞ ¼ 0 at s ¼ 0: ð5Þ
�hs in (1) is calculated by

�hs ¼
kNus
H

; ð6Þ

in which k is the thermal conductivity of fluid, and Nus is
the average Nusselt number on the sidewall which is de-

fined as

Nus ¼
1

A

Z A

0

oh
or

� �
r¼1

dz; ð7Þ

where (oh/or)r=1 is the dimensionless temperature gradi-

ent at the vertical sidewall, and r and z are dimensionless

radial and axial coordinates (non-dimensionalized by

R), respectively. Hence, (3) becomes

dhaðsÞ
haðsÞ þ 1

¼ � 2Nus
ARa1=2

ds; ð8Þ

where the relationship j = k/(qcp) has been used.

As the dependence on time of Nus is quite small com-

pared to that of ha(s) it is assumed that Nus is independ-
ent of s in (8), therefore, (8) can be written as

dhaðsÞ
haðsÞ þ 1

¼ � 2C0

ARa1=2
dðNussÞ; ð9Þ

where C0 is a proportionality constant.

It was also shown in [25,27] that Nus has the follow-

ing scaling relation with Ra for Pr P 1

Nus � Ra1=4H � Ra1=4A3=4; ð10Þ

where the symbol ‘‘�’’ denotes ‘‘scales to’’, and RaH is

the Rayleigh number defined with H, that is,

RaH ¼ gbðT 0 � T wÞH 3

mj
¼ RaA3:
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Hence, (9) has the following solution

haðsÞ ¼ e�C1ðARaÞ�1=4s � 1; ð11Þ

where C1 is a proportionality constant.

2.2. Case 2

In this case, as the fluid cooling is achieved by main-

taining a fixed temperature Tw on both the sidewall and

the bottom boundary of the cylinder while keeping the

top boundary adiabatic, energy conservation requires

that

qV ccp
dT aðtÞ
dt

¼ �ð�hsAs þ �hbAbÞ½T aðtÞ � T w�; ð12Þ

where �hb is the average heat transfer coefficient on the

bottom boundary with the surface area Ab = pR2. It is

assumed that �hb � �hs and the scaling relation (10) is also

valid for Nub, that is,

Nub � Ra1=4; ð13Þ

where Nub is the average Nusselt number on the bottom

boundary, which is defined as follows

Nub ¼
Z 1

0

oh
oz

� �
z¼0

dr; ð14Þ

in which (oh/oz)z=0 is the dimensionless temperature gra-

dient at the bottom boundary. Hence, (12) can be re-

duced to an ordinary differential equation similar to

(9) with the same initial condition represented by (2),

which has the following scaling relation

hðsÞ ¼ e�C2ðARaÞ�1=4s � 1; ð15Þ

where C2 is another proportionality constant.
3. Governing equations and numerical method

3.1. Governing equations

The unsteady natural convection flow in the cylinder

is governed by the Navier–Stokes equations and temper-

ature equation. With the Boussinesq assumption, these

governing equations can be written in dimensionless

and incompressible form as follows:

1

r
oðruÞ
or

þ ov
oz

¼ 0; ð16Þ

ou
os

þ 1

r
oðruuÞ
or

þ oðvuÞ
oz

¼ � op
or

þ Pr

Ra1=2
o

or
1

r
oðruÞ
or

� �
þ o2u

oz2

� �
; ð17Þ
ov
os

þ 1

r
oðruvÞ
or

þ oðvvÞ
oz

¼ � op
oz

þ Pr

Ra1=2
1

r
o

or
r
ov
or

� �
þ o

2v
oz2

� �
þ Prh; ð18Þ

oh
os

þ 1

r
oðruhÞ
or

þ oðvhÞ
oz

¼ 1

Ra1=2
1

r
o

or
r
oh
or

� �
þ o2h

oz2

� �
:

ð19Þ

where r, z, u, v, s, p, and h are respectively the non-

dimensionalized radial coordinate, axial coordinate,

r-velocity, z-velocity, time, pressure, and temperature.

All the lengths, velocities, time, pressure, and temper-

ature in the governing equations are made dimensionless

by R, V0, R/V0, qV
2
0, and (T � T0)/(T0 � Tw), respec-

tively, where T is the dimensional temperature.

The appropriate initial and boundary conditions

are

u ¼ v ¼ 0; h ¼ 0 at all r; z when s < 0;

and

u ¼ 0;
ov
or

¼ 0;
oh
or

¼ 0 at r ¼ 0; 0 6 z 6 A;

u ¼ v ¼ 0; h ¼ �1 at r ¼ 1; 0 6 z 6 A;

u ¼ v ¼ 0;
oh
oz

¼ 0 at 0 6 r 6 1; z ¼ 0 for Case 1;

u ¼ v ¼ 0; h ¼ �1 at 0 6 r 6 1; z ¼ 0 for Case 2;

u ¼ v ¼ 0;
oh
oz

¼ 0 at 0 6 r 6 1; z ¼ A when s P 0:
3.2. Numerical method

Detailed information about the numerical algorithm

and numerical accuracy tests can be found in [24,25].

Only a brief introduction is presented here.

Due to the large variation in length scales it is neces-

sary to use a mesh that concentrates points in the

boundary layer and is relatively coarse in the interior.

In this study, the mesh used for all runs of direct numer-

ical simulations is constructed using a stretched grid and

has 199 · 199 grid points, which are distributed symmet-

rically with respect to the half-width and half-height of

the computational domain represented by Fig. 1(c).

The nearest grid point is located 0.001 from the domain

boundaries. Subsequently, the mesh expands at a fixed

rate up to r = z = 0.1 in both r and z directions. After

that, the mesh size expansion rate decreases at a rate

of 10% until it reaches zero, resulting in a constant

coarse mesh in the interior of the domain.

The stretching factor in the r direction is chosen to

be 4.12% for all runs but some different values of the



Table 1

Vertical stretching factors and time steps used in the direct

numerical simulations

Run Ra A Pr Vertical

stretching factor

Time step

1 6 · 106 1 7 1.0412 3.5 · 10�4

2 6 · 107 1 7 1.0412 5.5 · 10�4

3 6 · 108 1 7 1.0412 8.7 · 10�4

4 6 · 109 1 7 1.0412 1.4 · 10�3

5 6 · 1010 1 7 1.0412 8.7 · 10�4

6 6 · 108 1/3 7 1.0106 1.7 · 10�3

7 6 · 108 1/2 7 1.0205 1.7 · 10�3

8 6 · 108 2 7 1.0705 4.4 · 10�4

9 6 · 108 3 7 1.0650 4.4 · 10�4

10 6 · 108 1 1 1.0412 6.1 · 10�4

11 6 · 108 1 50 1.0412 6.1 · 10�4

12 6 · 108 1 200 1.0412 3.1 · 10�4

13 6 · 108 1 1000 1.0412 2.4 · 10�4
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stretching factor have been chosen for the runs with

A5 1 in the z direction for constructing the mesh with

the same 199 · 199 grid points, as listed in Table 1,

where the vertical stretching factors and the time steps

used in all 13 runs are presented for both cases.

The equations are discretized on a non-staggered

mesh using finite volumes, with standard second-order

central difference schemes used for the viscous, pressure

gradient and divergence terms. The QUICK third-order

upwind scheme is used for the advective terms [29]. The

second-order Adams–Bashforth scheme and Crank–

Nicolson scheme are used for the time integration

of the advective terms and the diffusive terms, respec-

tively. To enforce the continuity, the pressure correction

method is used to construct a Poisson�s equation which

is solved using the preconditioned GMRES method.

Detailed descriptions of these schemes were given in

[30,31] and the code has been widely used for the simu-

lation of a range of buoyancy dominated flows (see, e.g.

[17,32–37]).
4. Numerical results and discussions

The purpose of the direct numerical simulations in

this study is threefold. First, the scaling relations (11)

and (15) are verified by the numerical simulation results

with selected values of Ra, A, and Pr in the ranges of 1/

3 6 A 6 3, 6 · 106 6 Ra 6 6 · 1010, and 1 6 Pr 6 1000.

Secondly the proportionality constants C1 and C2 in

the scaling relations are quantified using these numerical

results. Finally, the long-term behavior of the averaged

Nusselt numbers and the assumption that �hb � �hs,
which was made in the scaling analysis, are examined

using these numerical results.

The technique for verifying the scaling relations (11)

and (15) is firstly by examining the dependence of these
scaling relations on individual control parameters Ra, A,

and Pr respectively, which will be achieved by carrying

out a series of direct numerical simulations with several

selected values of a specific parameter while keeping the

other control parameters unchanged with selected val-

ues, and then by examining the combined dependence

of the scaling relations on all control parameters, which

will be achieved by combining the three sets of individ-

ual numerical results obtained in the previous step. Spe-

cifically, direct numerical simulations with Ra = 6 · 106,

6 · 107, 6 · 108, 6 · 109, and 6 · 1010 while keeping

A = 1 and Pr = 7 unchanged will be carried out to show

the dependence of the scaling relations on Ra (runs 1–5);

simulations with A = 1/3, 1/2, 1, 2, and 3 while keeping

Ra = 6 · 108 and Pr = 7 unchanged will be carried out

to show the dependence on A (runs 3 and 6–9); and

simulations with Pr = 1, 7, 50, 200, and 1000 while keep-

ing Ra = 6 · 108 and A = 1 unchanged will be used to

show the dependence of the scaling relations on Pr (runs

3 and 10–13), respectively.

As theoretically and numerically it needs an infinite

time to fully cool down the fluid in the cylinder (that

is, to reach exactly ha(s) = �1), it is necessary to termi-

nate the numerical simulations at some point. In this

study, as a general rule, all direct numerical simulations

will be terminated when s = sf, that is when ha(sf) =
�0.99.

Details of the flow structures during the stages of the

start-up and the stratification were reported in [24–26],

which will not be repeated here.

4.1. Case 1

Fig. 2 contains the numerically obtained ha(s) for all
13 runs in Case 1 to show the dependence of the scaling

relation (11) on each individual control parameter Ra,

A, and Pr. Fig. 2(a) contains the raw data showing the

time series of ha(s) for Ra = 6 · 106, 6 · 107, 6 · 108,

6 · 109, and 6 · 1010 with A = 1 and Pr = 7 unchanged.

The scaling relation (11) shows that the dependence of

ha(s) on Ra goes like Ra�1/4, and the time series of

ha(s) with this scaling are shown in Fig. 2(b), where it

is seen that this scale brings all five sets of data for dif-

ferent Ra together, indicating that Ra�1/4 is the correct

dependence of ha(s) on Ra in the scaling relation (11).

Similarly, Fig. 2(c) contains the raw data showing the

time series of ha(s) for A = 1/3, 1/2, 1, 2, and 3 with

Ra = 6 · 108 and Pr = 7 unchanged. The scaling relation

(11) shows that the dependence of ha(s) on A goes like

A�1/4, and the time series of ha(s) with this scaling are

shown in Fig. 2(d), where, again, it is seen that this scale

brings all five sets of data for different A together, indi-

cating that A�1/4 is the correct dependence of ha(s) on A

in the scaling relation (11). Fig. 2(e) contains the raw

data showing the time series of ha(s) for Pr = 1, 7, 50,

200, and 1000 with Ra = 6 · 108 and A = 1 unchanged.
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2 (– � –), and 3 (– �� –) with Ra = 6 · 108 and Pr = 7; (e) time series of ha(s) for Pr = 1 (––), 7 (� � �), 50 (–––), 200 (– � –), and 1000 (– �� –)
with Ra = 6 · 108 and A = 1, respectively. All results are presented for Case 1.
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The scaling relation (11) shows that there is no depend-

ence of ha(s) on Pr, and the overlaying of all five sets of

raw data for different Pr presented in Fig. 2(e) clearly

demonstrates this feature.

The numerically obtained ha(s) is plotted against the

full scaling relation (ARa)�1/4s in Fig. 3(a) for all runs in

Case 1. The collapse of all sets of data onto a single

curve again confirms that the scaling relation (11) is true

for Case 1. The specific values of the proportionality

constant C1 for each run, determined by a curve-fitting

method with the minimal standard deviation (denoted

as sdi), are listed in Table 2. It is noted that the variation

in the C1 values is of the order of 6%, indicating that a

single C1 value will provide a good representation of

the behavior of the flow. This general value of C1 is

found in the same fashion for all 13 sets of data by com-

bining them into a single average set, as C1 = 1.287. The

numerically obtained ha(s) is plotted against

e�1:287ðA RaÞ�1=4s in Fig. 3(b) for all runs in Case 1, and

the standard deviation (denotes as sdt) produced by

using this value of C1 for each individual run is also



Table 2

Values of C1 for each run and their corresponding standard

deviations in Case 1

Run Ra A Pr C1 sdi sdt

1 6 · 106 1 7 1.238 0.000734 0.000778

2 6 · 107 1 7 1.258 0.000669 0.000685

3 6 · 108 1 7 1.273 0.000615 0.000620

4 6 · 109 1 7 1.289 0.000571 0.000571

5 6 · 1010 1 7 1.321 0.000334 0.000349

6 6 · 108 1/3 7 1.160 0.000354 0.000665

7 6 · 108 1/2 7 1.295 0.000570 0.000571

8 6 · 108 2 7 1.300 0.000417 0.000419

9 6 · 108 3 7 1.328 0.000375 0.000395

10 6 · 108 1 1 1.198 0.000806 0.001033

11 6 · 108 1 50 1.235 0.000797 0.000882

12 6 · 108 1 200 1.295 0.000454 0.000454

13 6 · 108 1 1000 1.305 0.000648 0.000654
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listed in Table 2, which clearly shows that this general

value of C1 gives a good quantification of the scaling

relation (11) for A, Ra and Pr in the ranges of 1/

3 6 A 6 3, 6 · 106 6 Ra 6 6 · 1010, and 1 6 Pr 6 500,

that is,
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haðsÞ ¼ e�1:287ðARaÞ�1=4s � 1: ð20Þ

The scaling and numerical results show that the time

to full cooling, sf as defined above, scales as

sf � ðARaÞ1=4: ð21Þ

Using the definition given above for sf, that is the time

for ha(s) to reach �0.99, and the scaling relation (20),

the scaled sf is obtained for Case 1 as

sf ¼ 3:578ðARaÞ1=4: ð22Þ

This sf will be used below to scale the Nusselt number

and to obtain a time averaged Nusselt number.

The numerical results showing the dependence of the

average Nusselt numbers on individual Ra, A and Pr are

presented in Fig. 4 for Case 1, where Nus;a is the average
Nusselt number on the sidewall over sf, that is,

Nus;a ¼
1

sf

Z sf

0

NusðsÞds: ð23Þ

The time shown is scaled against sf, while the Nus shown
in (a) and (c) are scaled against Ra1/4 and A3/4, respec-

tively. It is apparent that the time scaling combined with
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(e) NusðsÞ plotted against s/sf and (f) Nus;a plotted against Pr for

108 and A = 1, respectively. All results are presented for Case 1.
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the Ra and A scalings provides a good representation of

the behavior of Nus, with all results collapsing close to

single lines, in both (a) and (c). The Prandtl number var-

iation results, shown in (e), again show that the Prandtl

number is not an important control parameter, as pre-

dicted. The Nus variation also shows a basically asymp-

totic behavior, as expected, with relatively little variation

over the last 60% of the development time. The time

averaged results, shown in (b), (d), and (f), further con-

firm the Nus scaling, showing very close to linear rela-

tions to Ra1/4 and A3/4, and little variation with Pr.

4.2. Case 2

The direct numerical simulation results for Case 2 are

presented in Fig. 5 to show the individual dependence of

the scaling relation (15) on Ra, A, and Pr, respectively.

The collapse of all five sets of numerically obtained

ha(s) onto a single curve in each of Fig. 5(b), (d) and

(e) clearly shows that the dependence of the scaling rela-

tion (15) on each of the control parameters Ra, A, and

Pr is true for Case 2, similar to that for Case 1.

The numerically obtained ha(s) is plotted against

(ARa)�1/4s in Fig. 6(a) for all runs in Case 2. The col-
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6 · 1010 (– �� –) with A = 1 and Pr = 7; (c) time series of ha(s) and (d)

2 (– � –), and 3 (– �� –) with Ra = 6 · 108 and Pr = 7; (e) time series of h
with Ra = 6 · 108 and A = 1, respectively. All results are presented fo
lapse of all sets of data onto a single curve confirms

again that the scaling relation (15) is true for Case 2.

The specific values of the proportional constant C2 for

each run, determined by the curve-fitting method with

the minimal standard deviation sdi, are listed in Table

3. Once again a best fit single C2 can be obtained for

all the data, as described above, given for Case 2,

C2 = 1.357. All the data sets are plotted, using this C2,

in Fig. 6(b), while the standard deviation for each data

set is shown in Table 3 as sdt. The scaling relation (15)

is therefore well approximated by the following general

equation for A, Ra and Pr in the ranges of 1/3 6

A 6 3, 6 · 106 6 Ra 6 6 · 1010, and 1 6 Pr 6 500,

haðsÞ ¼ e�1:357ðARaÞ�1=4s � 1: ð24Þ

Using the definition given above for sf and the scaling

relation (24), the scaled sf is obtained for Case 2 as

sf ¼ 3:394ðARaÞ1=4: ð25Þ

This sf will be used below to scale the Nusselt number

and to obtain a time averaged Nusselt number.

The numerical results showing the dependence of the

average Nusselt numbers on Ra, A and Pr are presented

in Figs. 7–9 for Case 2 respectively, where Nub;a is the
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(bold) Ra = 6 · 108, A = 1, Pr = 1000; (–––) (bold),
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Table 3

Values of C2 for each run and their corresponding standard

deviations in Case 2

Run Ra A Pr C2 sdi sdt

1 6 · 106 1 7 1.425 0.001327 0.001368

2 6 · 107 1 7 1.379 0.001078 0.001083

3 6 · 108 1 7 1.354 0.000900 0.000900

4 6 · 109 1 7 1.346 0.000770 0.000771

5 6 · 1010 1 7 1.354 0.000426 0.000427

6 6 · 108 1/3 7 1.292 0.000681 0.000732

7 6 · 108 1/2 7 1.368 0.000784 0.000785

8 6 · 108 2 7 1.369 0.000551 0.000552

9 6 · 108 3 7 1.354 0.000506 0.000506

10 6 · 108 1 1 1.456 0.001419 0.001585

11 6 · 108 1 50 1.400 0.001357 0.001390

12 6 · 108 1 200 1.338 0.000582 0.000585

13 6 · 108 1 1000 1.336 0.000786 0.000791
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average Nusselt number on the bottom boundary over sf
and Nut;a is the average Nusselt number on all bounda-

ries, that is,

Nub;a ¼
1

sf

Z sf

0

NubðsÞds; ð26Þ
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tively. It is apparent that the time scaling combined with
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close to single lines, in both Fig. 7(a) and Fig. 8(a). The

time scaling combined with the Ra and A scalings pro-
vides less satisfactory representation of the behavior of

Nub, with some variations seen in the results shown in



0 0.1 0.2 0.3
-2

-1

0

0.85 0.9 0.95 1

-4

-2

0

( 
 ,0

.5
)

(0
.5

,  
)

z

z

vu

r

r

(a) (b)

Fig. 10. (a) The vertical profile of the horizontal velocity at

r = 0.5 and (b) the horizontal profile of the vertical velocity at

z = 0.5 at s = 4 (––), 16 (� � �), 40 (–––), and 160 (– � –) for

Ra = 6 · 108, Pr = 7 and A = 1 in Case 2.

64 W. Lin, S.W. Armfield / International Journal of Heat and Mass Transfer 48 (2005) 53–66
both Figs. 7(b) and 8(b). The time averaged results,

shown in Fig. 7(c) and Fig. 8(c), further confirm the

Nus scalings, showing very close to linear relations to

Ra1/4 and A3/4. The results for Nub;a show a linear rela-

tion with Ra1/4, as shown in Fig. 7(d), however the A

scaling, shown in Fig. 8(d), shows some non-linear

behavior for low A. The Nut;a results show linear relation

with Ra1/4 and A3/4. The numerical results showing the

dependence of the average Nusselt numbers on Pr for

Case 2, as presented in Fig. 9, clearly show that there

is relatively little dependence on Pr for the long-term

behavior of Nus, Nus;a and Nut;a, again consistent with

the assumption about the average heat transfer coeffi-

cient on the sidewall. The Nub and Nub;a relations are less
satisfactory, showing some Pr dependence in the heat

transfer on the bottom boundary.

The percentage of heat transferred through the bot-

tom boundary over sf, /b, is defined as

/b ¼
R sf
0
�hbAb dsR sf

0
�hbAb dsþ

R sf
0
�hsAs ds

; ð28Þ

which can also be expressed as follows

/b ¼
Nub;a

Nub;a þ 2Nus;a
: ð29Þ

The numerically obtained /b is presented in Table 4 for

all runs in Case 2, clearly showing that the assumption
�hb � �hs which was made in the scaling analysis is true.

Fig. 10 contains the vertical profiles of the horizontal

velocity at r = 0.5, u(0.5,z), and the horizontal profile of

the vertical velocity at z = 0.5, v(r, 0.5), at s = 4, 16, 40,

and 160 for Ra = 6 · 108, Pr = 7 and A = 1 in Case 2.

The results show that the flow velocity adjacent to the

bottom boundary is much smaller than that within the

boundary layer adjacent to the sidewall, particularly

during the later stages of cooling. The heat transfer in

the bottom region is therefore primarily conductive,
Table 4

Numerical results of /b for all simulations in Case 2

Run Ra A Pr /b (%)

1 6 · 106 1 7 6.33

2 6 · 107 1 7 4.06

3 6 · 108 1 7 2.67

4 6 · 109 1 7 1.91

5 6 · 1010 1 7 1.63

6 6 · 108 1/3 7 6.76

7 6 · 108 1/2 7 5.67

8 6 · 108 2 7 5.48

9 6 · 108 3 7 5.50

10 6 · 108 1 1 5.27

11 6 · 108 1 50 2.31

12 6 · 108 1 200 2.08

13 6 · 108 1 1000 0.56
and much smaller than that of the convective boundary

layer on the sidewall, as observed.
5. Concluding remarks

Scaling analysis has been used to obtain time scales

for the long-term behavior of the cooling of a fluid in

a vertical cylindrical container via the sidewalls and

the sidewall and bottom. The scaling relations have been

validated by comparison to numerical simulation. The

numerical results have also been used to obtain the pro-

portionality constants in the scaling relations, allowing

the time required for cooling to any required degree to

be accurately determined.

Using 99% as the cool down criterion the scaled non-

dimensional cool down time for the side cooled cavity is

3.578(ARa)1/4, and for the side and bottom cooled cav-

ity is 3.394(ARa)1/4. It has been shown that for Case 1,

sidewall cooling only, the scaling relations correspond

very well to the behavior of the numerical results, con-

firming the approximations used to obtain those rela-

tions. The results for Case 2 also show that the scaling

relations provide a very good prediction of the overall

cooling down rate, represented as ha(s). The form of

the ha(s) scaling relation for Case 2 is the same as that

for Case 1, with only a variation in the proportionality

constant, as noted above. This again confirms that the

assumptions made in obtaining the scaling relations

are correct, and that additionally cooling the bottom

has little effect on the overall cooling rate. The relative

behavior of the bottom and sidewall cooling has been

further investigated by obtaining Nus and Nub sepa-

rately, and comparing them to their scaling relations.

Nus is seen to correspond very well to the scaling rela-

tion, while the Nub correspondence is seen to be less sat-

isfactory, with some Pr dependence observed as well as

some variations observed in the scaled results. This

may be, at least in part, attributed to the variation in

the nature of the heat transfer within the fluid adjacent

to the bottom boundary. In the early stages of the flow

an intrusion travels from the wall across the container
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bottom, and during that stage the Nub heat transfer is

relatively large, as seen in Fig. 7(b), 8(b), and 9(b), how-

ever during the later stages of cooling the flow adjacent

to the bottom is near to quiescent and the predominant

mode of heat transfer within the fluid in that region is

conduction. The observation that Nub has some Pr

dependence supports this hypothesis, however the scal-

ing relations do not represent this change in flow type,

or the weak Pr dependence.

Despite this, the overall heat transfer rate for Case 2

is well represented by the scaling relations, as seen in the

Nut;a results, and this is at least in part because this is

dominated by Nub;a. The sidewall heat transfer is pre-

dominantly a result of the natural convection boundary

layer which forms there, maintaining a high temperature

gradient throughout the cooling process. The overall

heat transfer and cooling process for Case 2 is therefore

dominated by the sidewall heat transfer, and as a result,

for both Case 1 and 2 the cooling rate and total heat

transfer are well represented by the scaling relations pre-

sented above.
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